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Abstract. The Krauss-model is a stochastic model for traffic flow which is continuous in space. For periodic
boundary conditions it is well understood and known to display a non-unique flow-density relation (funda-
mental diagram) for certain densities. In many applications, however, the behaviour under open boundary
conditions plays a crucial role. In contrast to all models investigated so far, the high flow states of the
Krauss-model are not metastable, but also stable. Nevertheless we find that the current in open systems
obeys an extremal principle introduced for the case of simpler discrete models. The phase diagram of the
open system will be completely determined by the fundamental diagram of the periodic system through
this principle. In order to allow the investigation of the whole state space of the Krauss-model, appropri-
ate strategies for the injection of cars into the system are needed. Two methods solving this problem are
discussed and the boundary-induced phase transitions for both methods are studied. We also suggest a
supplementary rule for the extremal principle to account for cases where not all the possible bulk states
are generated by the chosen boundary conditions.

PACS. 02.50.Ey Stochastic processes – 45.70.Vn Granular models of complex systems; traffic flow –
05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion

1 Krauss-model

The number of vehicles on highways and in cities is in-
creasing each year causing vehicular traffic to suffer more
and more from jams. The phenomena related to traf-
fic jams have attracted the attention of physicists and
engineers since almost half a century, trying to develop
models describing the features of the real traffic. Gener-
ally there are two different approaches: microscopic and
macroscopic [1–3]. Whereas in microscopic models differ-
ent vehicles and their dynamics can be distinguished, in
macroscopic models only densities are considered, similar
to hydrodynamcis.

However, the approach of a physicist is usually quite
different from that of a traffic engineer. One of the current
interests of statistical physicists are the so called “nonequi-
librium systems”. In microscopic vehicular traffic theories,
vehicular traffic is treated as a system of interacting parti-
cles driven far from equilibrium and offers the possibility
to study various fundamental aspects of the dynamics of
truly nonequilibrium systems.

Empirical observations show that the average velocity
decreases with increasing vehicle density. So the average
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current (or flow), which is the product of average velocity
and density, is a function of the density. The functional re-
lation between current and density is usually called funda-
mental diagram. Its generic form can be understood easily.
For small densities all vehicles can move with their desired
velocity vmax and the current increases monotonously. For
large densities the vehicles interact with each other and
the average velocity is much smaller than in the free flow
regime. This causes a decrease of the current, with a max-
imum at an intermediate value.

The traffic model introduced in [4–6], called Krauss-
model in the following, is based on an approach by
Gipps [7] considering the braking distance of individual
cars. Starting from the assumption of safe driving an up-
date scheme can be formulated in the manner of the well-
known Nagel-Schreckenberg (NaSch) model [8,9]. In the
Krauss-model — unlike the NaSch model — the state
variables, i.e. space and velocity, are chosen to be con-
tinuous. To make the model safe, i.e. free of collisions, a
safe velocity vsafe for each car is introduced, which is cal-
culated in every timestep taking into account that there
is a maximum acceleration and deceleration rate for each
car. The vehicles will be updated in parallel corresponding
to discrete time dynamics.
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Fig. 1. Classes of qualitatively different behaviour in the
Krauss-model. In class I, the acceleration a and deceleration
b are realistic and all properties 1 − 5 of jams are present. In
class II decelerations are large and the properties 1, 3, and 4
of jams are not reproduced. In class III accelerations are large
and no jams exist (from [5]).

The model has been designed to reproduce the empir-
ical findings in traffic jams [10–12]:
1. There is a density regime with non-unique flow-density

relation.
2. Traffic jams can develop and exist under “pure” con-

ditions, i.e. in the absence of any obstacles.
3. The flux out of a jam is not maximal.
4. The outflow from jams is stable.
5. The outflow from jams and the velocity of the down-

stream front do not depend on the inflow conditions.
These properties are displayed by the model for a certain
range of parameters. The model equations proposed in [5]
even show a much richer behaviour depending on the re-
lation between the ac- and deceleration capabilities [5,6].
Three different domains can be distinguished (see Fig. 1):
– Class I:

– Accelerations and decelerations are realistic and
bounded.

– All properties of jams are modeled correctly.
– The jamming transition is a first order phase tran-

sition.
– Class II:

– Decelerations are unbounded
– Properties 1, 3, and 4 of jams are not reproduced.
– The jamming transition is no phase transition, but

a crossover.
– Class III:

– Accelerations are unbounded.
– No structure formation at all.

Throughout this article only models of class I will be in-
vestigated, i.e. stable jams can occur and the flow-density
relation is not unique in a certain density regime (Fig. 2).
The stability of the jams is directly related to the fact
that the outflow from a jam is smaller than the maximal
possible flow [13].

Recently an alternative classification of stochastic traf-
fic models with respect to two properties has been sug-
gested [14]:

– The stability of the high-flow states.
– The stability of the outflow interface of jams.

These stability criteria were introduced to obtain a clearer
characterization of traffic flow models with the focus on
their stochastic properties. The Krauss-model of class I
exhibits stable high-flow states and a stable jam inter-
face [14]. Stability of high-flow states means that the in-
trinsic stochasticity of the model is not sufficient to cause
a transition into the jammed regime. The physical origin
of this nonergodicity is still not clear although a similar ef-
fect has been observed in a simpler model [15]. Therefore,
the dynamics of the Krauss-models differs from the VDR-
model [16,17], for which an unstable interface was found.
For the latter, the high-flow states are truly metastable,
i.e. for increasing system length the probability for a tran-
sition into the jammed state becomes equal to one. In or-
der to emphasize the difference between the nature of the
high-flow states in the two models the term bistable is used
in the context of the Krauss-model.

1.1 Dynamical equations

To derive the underlying dynamical equations, two types
of motion of vehicles are considered. The first type is free
motion, the second the motion of a vehicle while interac-
tion with another vehicle takes place. Corresponding to
this, two main assumptions can be made. The free motion
is bounded by some maximum velocity vmax:

v ≤ vmax. (1)

It is assumed that the system remains free of collisions
and that a driver always chooses a velocity that does not
exceed the maximum safe velocity vsafe which guarantees
the absence of collisions:

v ≤ vsafe. (2)

vsafe is determined from the condition that the braking
distance d(v) needed to stop when moving with velocity v
satisfies

d(vf ) + vfτ ≤ d(vl) + g. (3)

The quantity on the left side is the braking distance of
the following car (velocity vf ) including a finite reaction
time τ . This distance has to be smaller than the braking
distance of the leading car (moving with velocity vl) plus
the gap g between the vehicles. Furthermore the model
takes into account that positive and negative accelerations
are bounded:

−b ≤ dv

dt
≤ a , with a, b > 0. (4)

It is natural to implement these restrictions using a
continuous space variable, but time is discrete with
timesteps ∆t. From the above restrictions the dynamics
of the model can be derived.
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It will be assumed that, apart from random fluctua-
tions, every vehicle moves at the highest velocity compat-
ible with the restrictions stated above. In this way the
model can be formulated immediately, giving

vsafe(t) = vl(t) +
g − vl(t)

vf (t)+vl(t)
2b + τ

,

vdes(t) = min{vmax, v(t) + a∆t, vsafe(t)},
v(t + ∆t) = max{0, vdes(t) − η},
x(t + ∆t) = x(t) + v∆t.

(5)

Here the gap g = xl − xf − lcar is the spatial headway
between the leading car at xl and the following car at xf ,
where lcar denotes the length of a car. vl and vf are the
velocities of leading and following cars, respectively. The
safe velocity vsafe has to be determined in accordance with
condition (3). vdes is the desired velocity representing the
wish to drive as fast as possible through the acceleration
v+a∆t, but also respecting the conditions (1) and (2). The
random perturbation η has been introduced to allow for
deviations from optimal driving, where η = εξ and ξ is a
random number uniformly distributed in the interval [0, 1].
ε is the maximum deceleration due to noise.

In the following we set ∆t = τ = 1. The other generic
parameters used in the simulations are

a = 0.1, b = 0.6, vmax = 5, ε = 1.0, lcar = 1.0. (6)

The unit of the space coordinates is the length lcar of
one car. Another parameter is the length L of the sys-
tem which has been chosen to be equal to 2001 (if not
stated otherwise).

1.2 Characteristics of the model

For the parameters chosen in (6) the Krauss-model be-
longs to class I and exhibits a bistable region with a stable
high flow branch which implies a non-unique flow-density
relation. Figure 2 shows a fundamental diagram for a sys-
tem corresponding to class I.

The existence of a bistable regime is related to the oc-
curance of phase separation in the system. The distribu-
tion of the gaps and velocities of a system in the jammed
state has two peaks [5], i.e. there are two groups of cars
in the system. It separates into a macroscopic jam and a
free-flow region. According to the initial conditions there
exists another system state in which cars drive with veloc-
ities close to vmax and the distribution of gaps possesses
only one peak. These states belong to the high-flow branch
in the ambiguous part of the fundamental diagram.

2 Open boundary conditions

One of the most significant differences between systems
with open and periodic boundary conditions is the car
density ρ, which in a periodic system is a conserved
quantity. Here the density and the initial conditions (in

Fig. 2. Fundamental diagram of the Krauss-model with pe-
riodic boundary conditions and a = 0.1, b = 0.6, vmax = 5,
ε = 1.0, lcar = 1.0. The density is a mean value of densities
measured in an interval of length L

3
located in the middle of a

system of length L = 2001. The flow q is measured locally in
the middle of the system. For densities 0.1 ≤ ρ ≤ 0.14 the flow
is bistable such that a stable high flow branch can be observed.

the bistable regime) determine the stationary state com-
pletely, which allows to study the density-dependence of
the macroscopic parameters. In systems with open bound-
ary conditions (OBC) one has to deal with two different
tuning parameters, namely the injection rate α and the
extraction rate β. So the car density in the bulk will be a
result of these rates and the underlying model dynamics.
In general a nontrivial density profile will develop, i.e. the
average density in the system will depend on the position.

The influence of α and β on the car density implies
that quantities like bulk density1, current (flow) q, and
the density profiles show a different behaviour than in pe-
riodic systems, which were studied extensively for cellular
automata, optimal velocity models etc. (see e.g. [1–3] and
references therein).

On the other hand, for OBC most investigations deal
with simple one-component systems, especially the asym-
metric simple exclusion process (ASEP) [18–22]. In [23]
the NaSch model with vmax > 1 was studied with
OBC and the results compared to empirical data. Spe-
cial boundary conditions for this case were also stud-
ied in [24]2. For driven lattice systems which exhibit a
metastable or bistable regime for periodic boundary con-
ditions not much is known about possible phase diagrams
in the case of open boundaries (see, however, [17,25]), nor
have systems been studied with stable high flow branches.

2.1 ASEP with open boundary conditions

The asymmetric simple exclusion process (ASEP) is the
simplest prototype-model of interacting systems driven far

1 Measured by averaging over an interval of length L
3

in the
middle of a system of length L.

2 See, however, the discussion of these results in [17].
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from equilibrium. It is a generic model for studying driven
systems and boundary-induced phase transitions [26–28].

The ASEP is a discrete particle hopping model. A par-
ticle can move forward one cell with probability p if the
lattice site immediately in front of it is empty. If the first
cell, corresponding to the left boundary3, is empty a par-
ticle will be injected there with probability α. If the last
cell is occupied the particle will be removed with proba-
bility β. By varying the tuning parameters α and β, and
therefore the densities at the boundaries, one obtains a
surprisingly rich phase diagram.

One distinguishes three different phases according to
the functional dependence of the current and the corre-
sponding stationary bulk density on the system parame-
ters. In the low-density phase the current is independent
of β. Here the current is limited by the input rate α which
then dominates the behaviour of the system. In the high-
density phase the behaviour is dominated by the output
rate β and the current is independent of α. In the maxi-
mum current phase the limiting factor for the current is
the bulk rate p and the current becomes independent of
both α and β.

In [29] a nice physical picture has been developed
which explains the structure of the phase diagram not only
qualitatively, but also quantitatively. By considering the
collective velocity vc = q′(ρ) which is the velocity of the
center of mass of a local perturbation in a homogeneous,
stationary background of density ρ and the shock velocity
vs = q2−q1

ρ2−ρ1
of a ‘domain wall’ between two stationary re-

gions of densities ρ1 and ρ2, one can understand the phase
diagram of systems with unique flow-density relation from
the fundamental diagram of the periodic system [29,30].
The idea behind is that these two velocities determine if
and how a perturbation will spread through the system.
For a detailed discussion see [30].

A general valid “rule” is found for systems with unique
flow-density relations, i.e. the current always obeys an ex-
tremal current principle [29,30]:

q = maxρ∈[ρ+,ρ−] q(ρ) for ρ− > ρ+,

q = minρ∈[ρ−,ρ+] q(ρ) for ρ− < ρ+.
(7)

ρ− and ρ+ are effective densities at the left and right
boundary, respectively. The principle (7) states that the
phase diagram of the open system is completely deter-
mined by the fundamental diagram q(ρ) of the periodic
counterpart. Moreover, it implies that two models with
different microscopic dynamics, but the same fundamen-
tal diagram, will have the same phase diagram for open
boundaries. In this sense the phase diagram is indepen-
dent of the microscopic dynamics.

2.2 Krauss-model with open boundary conditions

The aim of this paper is the study of the Krauss-model
with open boundary conditions, especially obtaining its

3 We assume that the particles move from left to right.

phase diagram, and furthermore to investigate its connec-
tion to the theory of boundary-induced phase transitions
(see Sect. 2.1). As will be shown, the choice of appropri-
ate injection/extraction strategies at the boundaries of the
system plays a crucial role. Here it should be kept in mind
that the principle (7) is formulated in terms of effective
boundary densities which result from these strategies.

The rules specified in the following sections have to be
such that the full range of possible bulk states (compare
Fig. 2) may be reached (at least theoretically). Especially,
we are interested in states of high flow. Therefore, one
might think of a strategy to inject cars with a initial ve-
locity of vmax and injection rate α. However, this will not
lead to a crash-free motion by itself.

Since the model is known to be crash-free from the
closed system, this is somehow surprising. The reason can
be found from the fact that under open boundary condi-
tions all kind of initial situations can occur due to the
stochastic feeding of cars. For the safety of the model
quantity ξ(t) = g(t) − vl(t) plays a crucial role. Its evo-
lution for the deterministic Krauss-model (ε = 0) is given
by [5]

ξ(t + ∆t) ≥ ξ(t)
(

1 − 1
τb + 1

)
, (8)

with τb = (v+vl)/2b. Equation (8) implies that if once ξ ≥
0 (and as a result g ≥ vl ≥ 0) this will hold for all future
timesteps. Safety is therefore guaranteed if ξ(t = 0) ≥ 0.
The latter condition is not fulfilled automatically if cars
are fed with a rate α. In simulations we found that a car
which collides with its predecessor always had ξ(t = 0) <
0. Note that the opposite is not true, i.e. a car that started
with negative ξ does not have to be involved in a crash4.
Due to the stochastic step in the update rules (5), ξ can
be pushed from negative to positive values but not the
other way around. Just choosing smaller initial velocities
reduces the probability that ξ(t = 0) < 0 leads to a crash
(even to negligible values) but the states of high flow will
not be reached5.

We follow two different strategies of injecting cars
to overcome the mentioned problems. One strategy is
based on the following idea: If there is enough space at
the beginning of the system, i.e. at least one carlength
lcar, cars are injected according to the injection rate α.
As a consequence one has to define an initial velocity
vinit = vf (t = 0) that is as high as possible (since in
the high flow states the average velocity v ≈ vmax), but
keeps the system free of crashes. The problem here is,
when using the formula for vsafe from (5), that a velocity
vf is already needed for its calculation. Moreover one has
to deal with the cases in which ξ(t = 0) ≤ 0. Using the
safety condition (3) we will derive a rule to determine vinit

in Section 3.
The other strategy investigated goes the opposite way.

The high-current states of the Krauss-model are charac-
4 From (8) follows that a crash is most probable for slow

moving leaders and small initial gap ginit.
5 That is another difference to the NaSch-like models in

which the choice of v ≤ g always leads to collision-free motion.
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terized by velocities close to vmax and more or less iden-
tical gaps g � lcar. This property can be used to define a
rule which mimics the structure of the high current states,
i.e. one defines a minimal gap ginit > lcar that has to be
respected at the left boundary and injects all cars with
vinit = vmax. It should be noted that in this case the in-
jection rate does not equal α anymore, but becomes a
monotonously increasing function of α. Details and simu-
lation results are given in Section 4.

3 An inflow-oriented injection rule

In this section an injection method is introduced which is
similar to that for the ASEP. Cars are injected into the
system with inflow rate α whenever there is at least one
carlength space in front of the system (ginit ≥ lcar), using
any safe initial velocity vinit (depending on the system
configuration). However, in order to reach large currents,
cars have to be injected with the maximum safe velocity
possible.

The rule, as stated up to now, leads the condition
ξ(t = 0) = ξinit < 0 which can cause accidents as seen
in Section 2.2. Since we want to investigate a naive gen-
eralisation of the injection strategy of the ASEP and to
compare the results to it, it is necessary to think about
a rule which is mainly oriented on α. Moreover, in real-
world applications one has to understand the behaviour
of such a rule, since cars usually are inserted according to
a given inflow instead of particular strategies.

3.1 Boundary rules (rule 1)

In order to complete the rule we have to find the maximum
safe velocity vinit possible. We can not just use (3) since
vf is not known. Moreover, the velocity has to be such
that the dynamics of the system allows the transition from
ξinit < 0 to ξ ≥ 0. As a solution we do not look only at
the first car in the system, but also at its predecessor.

The open boundary conditions for the inflow-oriented
rule are defined in the following way:
Step 1: Injection
If there is at least one car length free space at the begin-
ning of the system, with probability α we inject a car with
velocity vinit:

vinit = min

{
vmax,

√
2bg +

b

bl
v2

l + b2 − b

}
· (9)

This velocity is a function of vmax, the velocity vl of the
leading car, the deceleration rate b and an upper bound bl

for the actual deceleration of the leading car. The latter
is calculated using the velocity of the car in front of the
leading car and therefore, gives a bound for the worst case,
i.e., the maximum deceleration of the leader in the next
timestep.
Step 2: First update
Performing the first update of a car injected at the current

timestep, we define an own rule. Given vinit of step 1 we
follow the update rules of the Krauss-model in case of the
leading car moving with vl > vcrit, where vcrit is a constant
velocity depending on vmax. If vl ≤ vcrit, vsafe is set equal
to the gap g instead of using (5). This defines a cutoff for
which ξinit < 0 still leads to safe driving while keeping
ginit close to 1 for high values of α.
Step 3: Extraction
With probability 1− β a block is added at the end of the
road which causes the car at the end of the system to
slow down. Otherwise, with probability β, the cars simply
move out of the system.
Step 4: Update
Update with the Krauss-model update rules (see Sect. 1).

In the following we use parameters as given in (6) and
vcrit = 1.6, ginit = lcar = 1.0. The value for vcrit has been
determined by means of simulation. Note that ginit is the
space that has to be free at least at the left border of the
system.

3.2 Fundamental diagram

In contrast to periodic boundary conditions, the funda-
mental diagram q(ρ) is not easy to find for the full range
of bulk densities. While for a closed system the density ρ
is given and conserved, in open system it is a quantity
that results from the parameters α and β. Their influence
on ρ or q is non-linear. Another difficulty is that global
density and current should be measured in the stationary
state which is reached after quite long simulation times
for certain values of (α, β). A detailed discussion can be
found in [31]. Because of the complex relation between
(α, β) pairs and ρ or q, one can not find a value for the q
for each ρ and vice versa. It should be mentioned that ρ
and q are rather sensitive to changes in α or β [31].

Our strategy in finding the fundamental diagram is as
follows: For each pair of parameters (α, β), the simulation
has to be run until the stationary state is reached. Then,
the flow q and bulk density ρ are measured in the middle
of the system. For the latter this has been done in an
interval of length L

3 . These two values fix a point in the
ρ-q plane. To make the data more reliable and to reduce
the influence of noise, this has been repeated for several
times with different random seeds.

In Figure 3 the fundamental diagram of a system with
periodic boundary conditions and the same system with
open boundary conditions are compared. The high-flow
branch in the bistable density regime does not exist in
the open case. There are also other states missing in the
fundamental diagram of the system with open boundary
conditions, i.e., certain densities can not be generated by
the boundary rules defined in Section 3.1.

3.3 Phase diagram

The phase diagram as a function of α and β can be ob-
tained by studying the density profiles of systems in the
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Fig. 3. Comparison between the fundamental diagram of the
open system (�) and the one from the closed system (◦). The
points are obtained from density profiles in case of the open
system.

stationary state. It is easy to distinguish between low- and
high-density phases. To find the maximum current phase
one should compare the (ρ, q) pair of the system with the
fundamental diagram of the same system with periodic
boundary conditions.

Using the density profiles for systems with α, β ∈ [0, 1]
with increments of 0.02, we have drawn a phase diagram in
Figure 4. Different phases, phase boundaries and the typ-
ical density profiles for each phase are shown. The max-
imum current phase with q about 0.5 has been observed
for system with open right boundary (β = 1) and injec-
tion rate between α = 0.48 and α = 0.57 (broken line).
Note that all stable high-flow states in the bistable region
correspond to some point in the maximal current phase.

This phase diagram looks different from phase dia-
grams of similar models since one finds two different low
density regimes. Therefore, by varying α with β kept con-
stant, one observes a reentrance transition for large values
of β. It is natural to assume that this is related to the
special choice of input and output strategies. To verify
this, later on (Sect. 4) a different injection strategy will
be studied. The reason why this phase diagram looks un-
usual can be understood studying the relations between α,
β and dynamic parameters of the system (see Sect. 3.4).

A similar phenomenon has been observed in [32] in a
simple one-component lattice gas with next-nearest neigh-
bour interaction. Here a reentrance transition to a second
high-density phase was found. Although the origin of this
transition is not entirely clear, the authors of [32] argued
that it is related to the complicated connection between
boundary rates and the effective boundary densities.

3.4 Dependence of dynamic quantities on α, β

The dynamics of a system with open boundary conditions
depends on the parameters α and β. When β = 1, i.e. the
outflow is unrestricted, an increasing flow can be expected

Fig. 4. Phase diagram for the Krauss-model with open bound-
ary conditions and the inflow-oriented injection strategy. The
inserts show typical density profiles for each phase. The max-
imum current phase with flow q ≈ 0.5 is only observed for
systems with open right boundary (β = 1) and injection rate
between α = 0.48 and α = 0.57 (broken line) and shows an
oscillating density profile.

Fig. 5. α − q-diagram for β ∈ [0.70, 1]. The maximal reached
current decreases for smaller β since jams are builded due to
the disturbance at at the right boundary of the system. The
strong drop of the current for α > 0.58 is a result of the cutoff
vcrit in step 2.

with increasing injection rate α. In Figure 5 the flow of
the stationary state is plotted versus α. However, this is
true only for α < 0.58. For larger values, a sharp decline
in the flow can be seen which can be related to the in-
jection strategy. Note that the second injection strategy
introduced in Section 4 does not show that decline in the
α − q-relation.

For systems with β �= 1 the right boundary introduces
an external disturbance which increases with decreasing
β (cf. step 3). With β �= 1, the cars at the end of the
system are forced to slow down. Hence, the density at the
right boundary increases with decreasing β and jams are
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Fig. 6. Average velocity as a function of α and β. The contour
line (- - -), given by v > vmax/2, separates the free flow phase
(average v close to vmax) from the jammed phase (v much
smaller then vmax/2).

formed. These jams grow backwards into the system. If
the jams can not dissolve due to high inflow rates α, the
cars have a lower average velocity and the system’s density
is high.

Because of the bistability, the system has quite a dif-
ferent behaviour for β = 1 in comparison to any other β.
Note that already small (external) perturbations might
force the breakdown of the stable high-flow states in the
open system. Once a jam has established in the system
the high-flow states will not be reached again due to the
reduced outflow from jams, (ρ, qout) = (0.11, 0.51), which
is smaller than the maximal possible flow. As an example
for the behaviour of the system under a weak disturbance,
the α − q-relationship for β = 0.95 is shown in Figure 5.

On the other hand, one can study the relationship be-
tween q and β, using a constant value of α (not shown).
It is obvious that for very small values of β, the current
should vanish. In a system with closed right boundary
(β = 0), all cars are forced to stay in the system which
means a vanishing average velocity v = 0 and density
ρ = 1. For each α, one expects the highest value of cur-
rent for β = 1.

In Figure 6 the average velocity as a function of α and
β is shown. The contour in the α-β-plane shows the line
where v = vmax/2. In [5] this line was chosen to distinguish
between jam and free flow, i.e. states with v < vmax/2 are
in the jammed phase.

Before we will examine the connection to the extremal
principle the effects of rule 1 are investigated in more de-
tail. In order to measure the impact of that rule on flow
and density we let the system run for different values of α.
In each timestep only three cars are left in the system by
taking out the rest without taking care on their position
or velocity, i.e., the rest of the system is cut off. The re-
sulting relation between the density and flow at the left
boundary is shown in Figure 7. Following the line starting
from α = 0.1 the left border stays on the free flow branch
of the fundamental diagram up to α = 0.6. For bigger
values the system switches to just one state that belongs

Fig. 7. Simulation of the left boundary rules given in Sec-
tion 3.1 (Rule 1) and 4.1 (Rule 2). In each timestep only the
leftmost three cars are simulated while the rest of the system
is cut off. The dots represent the fundamental diagram taken
from the closed system. After a relaxation of 10 0000 timesteps
the points (ρ, q) are measured over another 10 0000 steps for
different values of α. The arrow indicates the direction of in-
creasing α.

to the jammed branch. The drop in the flow is therefore
not alone a result of jams moving backwards to the left
boundary, but an artificial effect of the rule itself. If the
predecessing vehicles are moving slow (v < vcrit)6 the safe
velocity of the inserted cars becomes g due to step 2 of
rule 1. And, g will be very small in case of high injection
rates. These effect will play a role for the interpretation of
the phase diagram in the context of the extremal principle.

3.5 Extremal principle

Since we could not observe the full range of states (cf.
Fig. 3) due to the cutoff in rule 1 at a certain inflow we
examined the extremal principle (see Sect. 2.1) only for a
subset of system states. Since the extremal principle (7) is
formulated in terms of boundary densities these have to be
determined from the stationary density profiles. For small
injection rates it is not easy at all to find the left boundary
density ρ−, due to the oscillations in density profiles. This
is no problem for models that have vmax = lcar (= particle
size).

For the parts of the phase diagram that look similar
to other models, i.e., all except for the second low density
regime α > 0.6, β > 0.6 (cf. Fig. 4), it should just be
stated that the principle was fulfilled for all these pairs of
(α, β).

A different behaviour is found for the second low den-
sity regime. The results of Section 3.4 suggest that this
is due to the fact that for rule 1 we do not have a
monotonic increase of inflow with α. Consider the point
(α, β) = (0.8, 0.8) which lies in the second low density

6 Which results e.g. from jam formation around the left
boundary.
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Fig. 8. Density profile for the system with (α, β) = (0.8, 0.8)
which lies in the second low density phase of Figure 4. The
inserts show a close up at the boundaries. The densities at
the left and right boundary are ρ− = 0.65 and ρ+ = 0.17
respectively, the bulk density is ρb = 0.04. A stationary flow
q = 0.21 is measured.

phase. Figure 8 shows the corresponding stationary den-
sity profile. Using the formulation (7) one finds an appar-
ent violation of the extremal principle, as will be demon-
strated. From the density profiles we find ρ− = 0.65 and
ρ+ = 0.17 and since ρ− > ρ+ the maximum of q(ρ−) and
q(ρ+) will be chosen according to (7), i.e., q(pred) = 0.48.
Instead we measure a stationary flow of q = 0.21.

Before we present an alternative interpretation of the
results in the second low density phase we recall some find-
ings in the context of the ASEP. All the results have been
obtained for models with vmax = 1 = ∆t. Since a stopped
particle can accelerate to vmax = 1 in one timestep, the
details of the the boundary rules (e.g. the choice of the
initial velocity of inserted cars) do not lead to additional
constraints on the system’s state. Then, the formulation
as given in (7) is sufficient to determine the system state.
For models with vmax > 1 (cf. [17]) the left boundary rule
has to be defined in a specific way to obtain results com-
patible with the extremal principle. The rule used in [17]
always allows the injection of cars with vmax. Hence large
flows can be reached and the problem that acceleration
to the maximum velocity takes several timesteps does not
occur.

In our case the left boundary density is large due to
the high injection rate (ρ− ∝ α) but the flow is restricted
to q = 0.21 due to the cutoff in step 2 of rule 1 (cf. Fig. 7).
Therefore, the system has to choose a state that matches
with that flow. Since the exit allows a higher flow no sta-
ble growing jam can develop in the system and the state
on the free flow branch is chosen. Indeed the profile shows
a sharp decrease in the density leading to a bulk density
ρb = 0.04 for which q(ρb) = 0.21 (cf. Fig. 2). This in-
dicates that the extremal principle (7) formulated only
in terms of boundary densities ρ−, ρ+ is not sufficient.
Moreover, one has to check if there is a restriction due to
the inflow and outflow rules (denoted by q−/+). (7) then

only applies for q ≤ q−/+. Otherwise the system state is
chosen by

qb = min{q−(α), q+(β)} (10)

with a density ρb satisfying q(ρb) = qb. Predicting the sta-
tionary system state according to (7) together with (10)
one finds good agreement for all pairs of (α, β). The re-
sults given for another injection strategy as formulated
in Section 4 will confirm this interpretation. We believe
that similar extensions of the extremal principle will be
necessary for other multicomponent models.

4 High-velocity-oriented injection rule

As seen in the last section it is not easy to define left
boundary conditions that allow the system to reach states
belonging to the stable high-flow branch and – at the same
time – ensure safe motion of the injected car under any
circumstances. In the following a rule is formulated that
tries to inject cars with the maximal velocity vmax of the
model.

4.1 Boundary rules (rule 2)

In order to generate the high-flow states we have a closer
look at the bistable regime of the corresponding peri-
odic system. Here high-flow states are characterized by
velocities close to vmax and approximately identical gaps
g � lcar. Therefore, instead of driving with initial speed
vinit to achieve safety, whenever there is an empty space of
one carlength lcar in front of the system, we try to inject
cars (with probability α) with an initial velocity vmax. To
guarantee a system free of crashes, we have to introduce a
minimum safety gap ginit to the preceding car (cf. also the
discussion in Sect. 2.2). Therefore not all injection trials
will be successful (see below).

Step 1 and step 2 of rule 1 are replaced by above strat-
egy while the definition of the right boundary conditions
is not changed. Using this strategy, it might happen that
no car will be injected for several timesteps because of
the lack of free space (ginit) at the beginning of the sys-
tem. This implies that the actual injection rate is smaller
than α and also the existence of a maximal density 1

ginit+1

which can be reached at the left boundary.
For the choice of the initial gap ginit three criteria are

formulated:

(i) ginit should leave the system crash-free.
(ii) High currents (comparable to those found in the

bistable regime of the periodic system) should be
reached.

(iii) ginit should be as small as possible.

The last criterion increases the maximum reachable den-
sity at the system’s entry so that a larger range of bound-
ary densities can be investigated.

To find an appropriate value for the initial gap, we
made several simulations with different values for ginit,
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Fig. 9. The relation between the current q and α for several
values ginit ∈ [1, 3.5], β = 1 and the parameters equal to (6).

and measured the current q for β = 1 to test criterion (ii).
For the values of ginit which satisfy (ii) we then checked
in simulations whether the system is free of crashes. This
could be done best using β ≈ 0. After filtering out unsuit-
able values of ginit we chose the minimum of the remaining
values.

In Figure 9 the relation between q and α for several val-
ues of ginit and β = 1 is shown. The current increases as α
increases and either reaches a constant value or decreases
and then reaches a constant value, depending on ginit. For
5 > ginit ≥ 2 the current reaches a constant value greater
than 0.6, which is in the bistable region of a system with
periodic boundary conditions. For ginit ≥ 5 q decreases
drastically. This is obvious, since it will be impossible to
reach a density in the regime of maximum current in that
case. The maximum current in terms of the periodic sys-
tem will be reached for a system with β = 1 and density
of 0.15.

In simulations for systems with β = 1 and β � 1
we have observed crashes for ginit < 2. Therefore, the
only values of ginit meeting the criteria (i), (ii) are val-
ues 5 > ginit ≥ 2. Because of the criterion (iii) we decided
to take ginit = 2 in order to reach a maximum possible left
boundary density.

In the following we present results of simulations using
this injection rule, parameters as given in (6) and ginit =
2, vinit = vmax. As long as the methods and interpretations
correspond to Section 3 the presentation will be kept brief.

4.2 Fundamental diagram

The fundamental diagram obtained for this system is very
similar to the system with periodic boundary conditions.
The high-flow states in the bistable regime can be reached
using rule 2, see Figure 10. With the present injection
strategy, increasing α does not cause the decrease of the
current in the way we saw in Section 3. The high-flow
states are only reached for systems with β = 1 (cf. next
sections).

Fig. 10. Fundamental diagram of the system with open bound-
aries and boundary conditions defined by rule 2. The maxi-
mum current and the high-flow states in the bistable region
are reached for systems with β = 1. The fundamental diagram
is similar to the fundamental diagram of the system with pe-
riodic boundary conditions (see Sect. 1).

Fig. 11. The relation between the q, α and β (ginit = 2). There
is no decrease of the current with increasing α anymore. The
broken line corresponds to q = 0.5.

4.3 Dependence of dynamic quantities on α, β

In this section we give a brief overview of the dependence
of the current q, average velocity v and the density ρ,
measured in the middle of the system, on (α, β).

In Figure 11 the relation between q, α and β is shown.
The current increases strongly for β values close to 1. We
have also indicated the boundary between the regions with
q > 0.5 and q < 0.5.

Figure 12 shows the dependence of the density on
(α, β). The density used here is measured in the middle of
a system in the stationary state, which is the density cor-
responding to the plateau in the density profile for most
pairs (α, β). One clearly sees a sharp transition from low
to high values which will be interpreted as the phase tran-
sition line between high and low density phases.



568 The European Physical Journal B

Fig. 12. The relation between the density ρ (measured in the
middle of the system in stationary state), α and β (ginit = 2).
The broken line, corresponding to a density ρ = 0.15, can be
interpreted as a phase transition line between high and low
density phases.

Fig. 13. The relation between the average velocity, α and β
(ginit = 2). The broken line corresponds to v = vmax/2 and can
be interpreted as transition line between free flow and jammed
phase.

Finally in Figure 13 the dependence of the average
velocity on (α, β) is presented. Using again the criterion
v = vmax/2 to distinguish between free flow and jam one
finds the same results for the phases as in Figure 12.

4.4 Phase diagram

In Figure 14 the phase diagram and different phases are
shown. The diagram has been derived from the density
profiles. The full α-β-plane was scanned in steps of size 0.1.
The maximum current phase has been observed for sys-
tems with open right boundary (β = 1). It is reached
for α ≥ 0.5. As one can see from Figure 7 at this value

Fig. 14. Phase diagram of the Krauss-model with open bound-
ary conditions and maximum-velocity-oriented injection rule
(rule 2). The maximum current phase has been observed for
systems with open right boundary (β = 1) and α ≥ 0.5. The
inserts show (from left to right) typical density profiles for low,
high and maximum current phase.

cars are fed in the system with the flow out of jam, i.e.,
qin(α = 0.5) = 0.51 = qout

7.
This phase diagram is similar to that of the much

simpler driven lattice gas discussed in [25]. The results
compare as well to the phase diagram found for the VDR-
model [17]. Therefore, we will only briefly discuss the ma-
jor differences found.

For the driven lattice gas of [25] the maximum current
phase is only found for very short system. The reason is
the true metastable nature of the high-flow states, i.e. in-
trinsic fluctuations are able to destroy these states even
without an external disturbance. Since the probability for
such fluctuations grow with the system length the max-
imum current phase will vanish above a typical system
size. In our case, we do not find such a disappearance,
even for very large systems8, since the high-flow states of
the Krauss-model are stable (as found in [14]).

The fact that we find the maximum current phase only
for β = 1, while in the case of the VDR-model it exists
for a slightly bigger range of β, can be related to the fol-
lowing. The interaction in the VDR-model is very short-
ranged due to the unbounded deceleration capability in
that model (the interaction horizon is g ≈ vmax). Instead,
for the Krauss-model of the investigated class I, cars do
already interact for g ≈ v2

max.

4.5 Extremal principle

We examined the validity of the extremal principle for this
model for every α and β ∈ [0, 1] with 0.1 steps. After mea-
suring the boundary densities ρ− and ρ+ we have used (7)

7 Using α = 0.5 and β ∈ [0, 1] one obtains the full high
density branch of the fundamental diagram.

8 We checked this for systems up to L = 50 000.
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to determine the current q(pred) predicted by the extremal
principle. This value has then been compared to the cur-
rent q measured in the open system. For all parameters
the results are in excellent agreement with q(pred). This is
in accordance with our suggestion (see Sect. 3.5) that as
long as the boundary rules do not restrict the flow in an
artificial way, the system will choose its bulk state accord-
ing to the extremal principle as formulated in (7). We also
checked our formulation with the addition given in (10).
For all pairs of (α, β) the correct bulk state was predicted.

5 Conclusions

In this article we investigated the properties of a traffic
flow model introduced by Krauss et al. [4–6] under open
boundary conditions. It is a discrete map in time while –
in contrast to cellular automata approaches – space is con-
tinuous. For the parameter range discussed, the Krauss-
model shows a non-unique relation between flow and
density. This property of the fundamental diagram is re-
sponsible for the stability of jams found in empirical ob-
servations. It is important to note that the corresponding
high-flow states have been shown to be stable [14] (sub-
ject to the model’s dynamics). In contrast in cellular au-
tomata models as the VDR-model [16,17] they usually
show metastable behaviour.

For application purposes open boundary conditions
play a crucial role. But also for purely theoretical purposes
the investigation of the Krauss-model’s behaviour under
open boundary conditions is valuable. In general, driven
interacting particle systems show boundary-induced phase
transitions. For systems with unique flow-density relation,
e.g. the ASEP as the prototype of such models, there ex-
ists a quite general theory for the stationary state the sys-
tem realized with open boundary conditions (cf. Sect. 2).
These results are well established for simple systems with
unique flow-density relation [28–30]. In contrast, not much
is known about for systems with a non-unique fundamen-
tal diagram. Moreover, the models investigated so far have
vmax = 1 (i.e. vmax can be reached within one timestep).
Only recently also discrete models with higher veloci-
ties (e.g. models of Nagel-Schreckenberg type [23]) and
non-unique flow-density relation [17,25] have been inves-
tigated. Here for the first time a continuous model with
vmax �= 1 and fundamental diagram with bistability, i.e.
stable high-flow states, has been studied with respect to
boundary-induced phase transitions.

In order to guarantee that the system remains free of
crashes, one has to find a strategy to inject cars into the
system. In this article two methods are discussed. The first
one is orientated on the inflow rate α, i.e. with probability
α a car is always inserted if there is enough space at the
left boundary. In this case one has to find an initial veloc-
ity which guarantees a crash-free motion of each inserted
car at any timestep (cf. Sect. 3). The second method fixes
a minimum free space ginit at the beginning of the sys-
tem (ginit > lcar) and cars are injected with the constant
velocity vmax (cf. Sect. 4).

For both rules the phase diagram has been derived
from computer simulations and, as expected, boundary-

induced phase transitions were found. From the ASEP
three different phases are known, distinguished by the
functional dependence of the current through the sys-
tem on α and β. These are the low-density, the high-
density and the maximum-curent phase. All these phases
are observed in the Krauss-model with open boundary
conditions.

In contrast to the findings in the ASEP [18–22] the
maximum current phase was only observed for an open
right boundary (β = 1). This reflects the high sensitivity
of the Krauss-model to an external disturbance at the sys-
tem’s exit which results from the long interaction horizon
of the model. However, in contrast to [25] the maximum
current phase in the Krauss-model exists for arbitrary sys-
tem lengths due to the stability of the high-flow states.

Moreover, the extremal principle (7) [29,30] has been
checked for both rules. For systems with vmax = 1 it was
found that the selection of the system’s state does not
primarily depend on the parameters (α, β), but on the re-
sulting densities ρ− and ρ+ at the left and right boundary,
respectively. Furthermore, the selected state is completely
determined by the flow-density relation of the correspond-
ing periodic system. In that sense the extremal princi-
ple states implies the independence of the system state
from the specific injection/extraction rule at the bound-
aries. For the second rule we found absolut agreement for
the Krauss-model (recall that here several timesteps are
needed to accelerate to vmax).

However, for the first rule deviations were found from
the principle. An unusual reentrance transition to a second
low-density phase occurs for high insertion and extraction
rates. Its existence could be ascribed to the behaviour of
the rule which shows a cutoff in the maximum flow for
α ≥ 0.6. This flow is lower than the one that is allowed
by the right boundary conditions. In other words, for a
model with vmax �= 1 the selection of the system’s state is
not independent of the specific boundary rules. We there-
fore argue that the extremal principle as given in [29,30]
can only be applied in this strict form to models with
vmax = 1. Here the provided maximum flow by the rule
plays no role, since a stopped car can always accelerate to
vmax in one timestep. Therefore any flow limitation due to
the insertion rule does not play a role. This is different in
the case of our model which has vmax > 1 and finite accel-
eration capability. However, if one takes an additional rule
into account, i.e. that the flow in the system can not ex-
ceed the flow allowed by the boundary rules, one can also
predict the system state with open boundary conditions
for our first rule (cf. Sect. 3) from the knowledge about
the periodic system.

We will close with a brief outlook. Due to our find-
ings more work on boundary-induced phase transitions for
models with vmax > 1 seems to be necessary. The focus
should be on finding a compact formulation of the ex-
tremal principle that is independent of vmax. Since in the
Krauss-model crash-free motion is not included as a rule
per se (as, through hard-core exclusion, in the cellular au-
tomata approaches) it would be helpful to develop a model
formulation that does not show such safety problems
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under open boundary conditions. This would be important
for applications in traffic flow simulation. To take into ac-
count next-nearest-neighbor interactions as suggested by
the findings of Section 3 seems to be promising [33].
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